

Published on Web 05/04/2009

Amino-Indanol Catalyzed Enantioselective Reactions of 3-Hydroxy-2-Pyridones

Julian Ying-Teck Soh and Choon-Hong Tan*

Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore 117543

Received January 24, 2009; E-mail: chmtanch@nus.edu.sg

The Diels-Alder reaction is one of the most important reactions for the synthesis of complex molecules, providing access to carbocyclic compounds containing up to four stereogenic centers in a single step.¹ Asymmetric catalysis in a Diels-Alder reaction has mainly been realized using chiral Lewis acids.² Recently, the use of organic Brønsted acids or Brønsted bases has emerged as a viable alternative for catalytic Diels-Alder reactions.³ Cycloaddition of 2-pyrone and 2-pyridone dienes generates structurally and stereochemically rich bicyclooctenes. However, these dienes have some aromatic character and participate in Diels-Alder reactions less readily.⁴ Deng et al. reported that 3-hydroxy-2-pyrones, using a cinchona alkaloid derivative as a catalyst, can take part in Diels-Alder reactions with excellent ee's.⁵ Okamura et al. were the first to report that the Diels-Alder reactions of 3-hydroxy-2-pyridone can be catalyzed by Brønsted bases.⁶ While preparing a glycosidase inhibitor, Vasella developed a methodology using quinine to promote the reaction between 3-hydroxy-2pyridone and 8-phenylmenthyl acrylate, leading to a dr of 96%.⁷

Organic bifunctional catalysts possessing both hydrogen bond donor and acceptor moieties have been successful in many enantioselective reactions.⁸ These catalysts are often derivatives of the cinchona alkaloids and/or contain urea/thiourea functionality.⁹ We are keen to develop simple catalysts, such as simple amino-alcohols **1a**–**d** that empower such modes of interactions (Figure 1).

Preliminary studies showed that the reaction between **2a** and *N*-phenylmaleimide **3a** can be catalyzed by 10 mol % of aminoindanols **1a**–**d** (Table 1, entries 1–4). In all reactions, only a single diastereoisomer was obtained, the *endo*-adduct. Moderate enantioselectivities were obtained, with catalyst **1a** showing the most promising results. The *cis* relationship of the amino and alcohol functional groups in the amino-indanols was critical for obtaining good enantioselectivity. Chlorinated solvents such as CH₂Cl₂ and CHCl₃ gave the most desired results. When the reaction temperature was lowered to -50 °C, adduct **4a** was obtained with an ee of 93% (entry 5). Subsequently, a series of *N*-substituted pyridones including **2b**–**c** (entries 6–7) was prepared.¹⁰ With the optimized conditions, both *N*-alkyl and *N*-aryl maleimides **3b**–**g** (entries 8–13) gave adducts with high ee's.

C4-Derivatives of 3-hydroxy-2-pyrones were prepared by Tsuboi and co-workers using a fairly extensive route,¹¹ while C4-derivatives of 3-hydroxy-2-pyridones were unknown. It was reported that 2-pyridone contains aromatic character,⁴ so we hypothesize that it should undergo electrophilic substitution reactions similar to phenol.

Figure 1. Amino-indanols.

6904 J. AM. CHEM. SOC. 2009, 131, 6904-6905

Table 1.	Amino-Inda	nol Catalyz	zed Diels	Alder I	Reactions	betwee	en
N-Sulpho	namide-3-h	ydroxy-2-py	yridones	2a-c ar	nd Maleimi	des 3a	ı−g

N-SO-Ar

0

	2a: Ar = 2b: Ar = 2c: Ar =	OH 2,4,6-N 3,5-Me 2,3,4,5	$V_{\rm D2C_6H_2}^{\rm VSO_2Ar}$ $V_{\rm O}$ + $V_{\rm N}-R$ $V_{\rm D2C_6H_2}^{\rm (Mes)}$ $V_{\rm D2C_6H_3}^{\rm O}$ $S_{\rm A}-R$ $S_{\rm A}-R$	10 mol9 CH ₂ Cl	% 1a-d O· ₂, 20h ∠ HC	0 N-R 4a-i	
entry	catalyst	2	3 [R]	4	temp/°C	yield /% ^a	ee /% ^b
1	1a	2a	3a [Ph]	4a	rt	96	61
2	1b	2a	3a [Ph]	4a	rt	97	32
3	1c	2a	3a [Ph]	4a	rt	93	40
4	1d	2a	3a [Ph]	4a	rt	93	53
5	1a	2a	3a [Ph]	$4a^c$	-50	93	93
6	1a	2b	3a [Ph]	4b	-50	96	81
7	1a	2c	3a [Ph]	4c	-50	96	88
8	1a	2a	3b $[Et]^d$	4d	-50	92	87
9	1a	2a	$3c [Bn]^d$	4e	-50	90	89
10	1a	2a	3d $[4-EtOC_6H_4]^d$	4f	-50	89	92
11	1a	2a	3e $[3,4-Cl_2C_6H_3]^d$	4g	-50	90	93
12	1a	2a	3f $[4-BrC_6H_4]^d$	4h	-50	92	94
13	1a	2a	$3g [4-MeC_6H_4]^d$	4 i	-50	95	94

^{*a*} Isolated yield. ^{*b*} Ee's were determined by chiral HPLC. ^{*c*} Absolute configuration of **4a** determined by X-ray analysis. ^{*d*} A solvent mixture of CH₂Cl₂ and PhCl (1:1) was used.

Chlorination (eq 1) and bromination (eq 2) were accomplished using sulfuryl chloride and *N*-bromosuccinimide with a catalytic amount of *i*-Pr₂NH as base.¹² 4-Chloro-3-hydroxy-2-pyridone **2d** and 4-bromo-3-hydroxy-2-pyridone **2e** were obtained in 75% and 78% yields, respectively. Pyridone **2a** underwent allylation of its phenolic group with ease (eq 3). Subjecting the *O*-allyl product under refluxing conditions, Claisen rearrangement provided 4-allyl-3-hydroxy-2-pyridone **2f** in good yield.¹³ Catalytic hydrogenation of **2f** reduced only the terminal alkene while keeping the aromatic 2-pyridone core intact, providing 3-hydroxy-4-propyl-2-pyridone **2g**. *O*-TBS-protected **2e** and

10.1021/ja900582a CCC: \$40.75 © 2009 American Chemical Society

Table 2. Diels-Alder Reactions of 4-Substituted 3-Hydroxy-2-pyridones 2d-h

$R^{1} \xrightarrow{\text{OH}} O^{\text{H}} \text{$							
entry	2 [R ¹]	R ²	adduct	yield/% ^a	ee/% ^b		
1	2d[C1]	Ph	5a	90	92		
2	2d[Cl]	Et	5b	88	94		
3	2d[C1]	4-MeC ₆ H ₄	5c	94	95		
4	2e [Br]	Ph	5d	92	90		
5	2e [Br]	Et	5e	91	90		
6	2e [Br]	Bn	5f	92	90		
7	2f[Allyl]	Ph	5g	89	87		
8	2f[Allyl]	$4-MeC_6H_4$	5h ^c	90	96		
9	2g[n-Propyl]	Ph	5i	93	83		
10	2g[n-Propyl]	Et	5j	90	83		
11	$2h[4-ClC_6H_4]$	Ph	5k	89	88		

^a Isolated yield. ^b Chiral HPLC. ^c Absolute configuration of 5h determined by X-ray analysis.

Table 3. Diels-Alder Reactions between 2a and Alkyl Vinyl Ketones

^a Diastereomic ratio by HPLC. ^b Yield of both isomers. ^c Chiral HPLC. para-chlorobenzene boronic acid coupled smoothly under Suzuki conditions (eq 4).¹⁴ The TBS group was removed with BF₃•Et₂O to give **2h** in good overall yield. Chloro- (Table 2, entries 1-3) and bromo- (entries 4-6) substitutions at the C4 position did not affect the Diels-Alder reaction dramatically; high ee's were observed for several maleimides used. While the sizes of the allyl (entries 7-8) and *n*-propyl (entries 9-10) groups were similar, the allyl substituted pyridone often gave slightly better ee's. 4-Chlorophenyl-3-hydroxy-2-pyridone 2h also gave a Diels-Alder adduct with a good level of ee (entry 11). We were not able to access C5 and C6 derivatives of 3-hydroxy-2pyridones as selective electrophilic substitution of these positions seems to be nontrivial.

Terminal olefins such as vinyl ketones were used as dienophiles in the Diels-Alder reactions. Reactions at room temperature gave ee's around 50% and were improved to 90% with a dr of 3:1 when the reaction was carried out at -40 °C (Table 3, entries 1-2). The structures of Diels-Alder adducts 6 and 7 were elucidated using ¹H-¹H COSY and NOE experiments (see Supporting Information, SI). The acrylates, however, gave only the endo diastereoisomer with an ee of up to 70% when subjected to the same reaction conditions. These experiments illustrated the versatility of this methodology; both cyclic and acyclic dienophiles can be used.

When β -nitro styrenes were used as the dienophiles, Aldol-Michael adducts 8a-b were obtained (eqs 5, 6). Adducts 8a-b resulted from pyridone 2a behaving exclusively as an alpha enol. Only one single isomer was obtained, and gamma-enol (homoenol) addition was not observed. This provided an indication that it is possible to tune the reactivity of hydroxy-pyridones to behave as a diene, an alpha-enol, or a gamma-enol. The absolute configuration of 8a was elucidated using X-ray analysis (see SI).

When 1a was used to catalyze the Diels-Alder reaction of 3-hydroxy-2-pyrone and N-mesitylmaleimide, a high level of ee was observed for the major diastereoisomer 9a (eq 7). Unlike the reaction between 3-hydroxy-2-pyridone and vinyl ketones, the exo isomer 9b gave a low level of ee.

$$\begin{array}{c} \begin{array}{c} & & & \\ & &$$

In summary, a new bifunctional catalyst 1a, containing both Brønsted base and hydrogen bonding donor moieties, has been identified. It is easily prepared in a single step from commercially available amino-indanol. It was found to be an excellent catalyst for Diels-Alder reactions of both 3-hydroxy-2-pyridone and 3-hydroxy-2-pyrone. Work is ongoing to utilize the Diels-Alder adducts as a starting material for natural product synthesis.

Acknowledgment. This work was supported by grants (R-143-000-337-112 and R-143-000-342-112) and a scholarship (to J.S.) from the National University of Singapore.

Supporting Information Available: Experimental procedures, characterization, and spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For a review of Diels-Alder reactions in total synthesis, see:(a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668-1698.
- For a review of Diels-Alder reaction, see:(a) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650-1667.
- (3) For a review on the use of Brønsted acids or bases as catalysts in Diels-Alder reactions, see:(a) Shen, J.; Tan, C.-H. Org. Biomol. Chem. 2007, 6, 3229-3236.
- (4) For a review of Diels-Alder reactions with 2-pyridones, see:(a) Afarinkia, K.; Vinader, V.; Nelson, T. D.; Posner, G. H. Tetrahedron 1992, 48, 9111-9171
- (5) (a) Wang, Y.; Li, H.; Wang, Y.-Q.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2007, 129, 6364–6365. (b) Singh, R. P.; Bartelson, K.; Wang, K.; Wang, Y.; K.; Wang, K.; Wang Y.; Su, H.; Lu, X.; Deng, L. J. Am. Chem. Soc. 2008, 130, 2422-2423.
- (6) Okamura, H.; Nagaike, H.; Iwagawa, T.; Nakatani, M. Tetrahedron Lett. 2000, 41, 8317-8321.
- (7) Böhm, M.; Lorthiois, E.; Meyyappan, M.; Vasella, A. Helv. Chim. Acta 2003, 86, 3787-3817.
- (8) For a review of hydrogen bond catalysts applied in enantioselective reactions, see:(a) Doyle, A. G.; Jacobsen, E. N. *Chem. Rev.* 2007, 107, 5713–5743. (b) Connon, S. J. *Chem. Commun.* 2008, 2499–2510.
 (9) For selected examples, see:(a) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Annu, Chem. Chem. Chem. Chem. T. Hashi Y.
- Angew. Chem., Int. Ed. 2000, 39, 1279-1281. (b) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672-12673. (c) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 906–907. (d) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576-6579.
- (10) Other sulfonyl protecting groups such as methyl sulfonyl and 2-naphthyl
- sulfonyl gave low conversions of the D-A adducts.
 (11) (a) Komiyama, T.; Takaguchi, Y.; Tsuboi, S. *Tetrahedron Lett.* 2004, 45, 6299–6301. (b) Komiyama, T.; Takaguchi, Y.; Gubaidullin, A. T.; Mamedov, V. A.; Litvinov, I. A.; Tsuboi, S. Tetrahedron 2005, 61, 2541-2547.
- (12) (a) Gnaim, J. M.; Sheldon, R. A. Tetrahedron Lett. 1995, 36, 3893-3896. (b) Fujisaki, S.; Eguchi, H.; Omura, A.; Okamoto, A.; Nishida, A. Bull. Chem. Soc. Jpn. 1993, 66, 1576–1579.
- (13) Moffett, R. B. J. Org. Chem. 1963, 28, 2885-2886.

(14) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020-4028. JA900582A